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Background
Feature-based synthesis applies machine learning and signal pro-
cessing methods to the development of alternative interfaces for 
controlling parametric synthesis algorithms. One approach, 
geared toward real-time control, uses low dimensional gestural 
controllers and learned mappings from control spaces to parame-
ter spaces, making use of an intermediate latent timbre distribu-
tion, such that the control space affords a spatially-intuitive 
arrangement of sonic possibilities. This work attempts to address 
questions regarding user experience in such systems, including 
the accuracy of user mental models, and how these techniques can 
be integrated in a way that simplifies interaction for novices while 
affording new abilities to experts without encumbering existing 
modes of interaction. 

[1] M. D. Hoffman and P. Cook. Feature-based synthesis: A tool for eval-
uating, designing, and interacting with music ir systems., 01 2006. 

[2] S. Fasciani. Interactive computation of timbre spaces for sound syn-
thesis control. 2016. 

[3] R. Tubb and S. Dixon. A zoomable mapping of a musical parameter 
space using hilbert curves. Computer Music Journal, 38:23–33, 2014. 
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Introduction to the Drexel University Graphic Identity Program

A memorable and effective identity takes years to build, but it can quickly 
erode through a failure to protect and accurately implement the elements 
that define it.

This document will provide you with the basic guidelines for Drexel 
University’s Graphic Identity Program, including how to use the new 
primary logotypes (vertical shown below). The elements outlined in this 
guide highlight the key graphic tools available to represent and express 
Drexel’s unified image to the world. Used with care and imagination, 
these new tools will ensure that the university’s image will retain its impact 
and consistency for years to come.

The key to this graphic identity program is the system of wordmark 
and contrasting color. In order to maintain consistency throughout 
the system, the new graphic identity program prohibits the use of any 
additional iconography, marks or artwork outside of the approved 
university dragon icon.

To learn more, go to drexel.edu/identity.
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Proposed System

• While unimodal latent space constraints suffice for low-di-
mensional synths, multimodal latent spaces modeled by 
Deep Latent Gaussian Mixture Models (DLGMMs) may be 
more appropriate for high-dimensional synths, whose latent 
spaces are over-regularized by the current system.  

• A systematic evaluation is needed to address whether the 
visual equivalence of parameter and control spaces is neces-
sary to accurately understand the system, and whether con-
trol and parameter spaces support different modes of cre-
ation and ranges of synthesis expertise. We plan on conduct-
ing a user study consisting of open-ended exploration, musi-
cal tasks, and user interviews. 

Future Work 

• Though others have explored learned many-to-many mappings 
from control spaces to parameter spaces based on timbre [1][2], 
such interfaces necessarily supplant traditional one-to-one inter-
faces due to the lack of integration between the two spaces. 

• One system integrates the two, but uses no timbral arrangement 
of the control space. [3]

• The proposed system uses an invertible mapping layer allowing 
inference of parameter values from control space coordinates, 
but also ensures updates made in parameter space (using the 
one-to-one interface) can project into the control space, which 
provides strong visual intuition for the equivalence of the two 
spaces.

Figure 1: (Left) Overview of system during training and runtime. Encoded training examples are used to predict known para-
meter values. Training yields a normally-distributed latent encoding with predictive dimensions. Post-training, principal com-

ponent analysis (PCA) re-orients the latent space and parameters are exported. (Right) Invertible runtime mapping model, con-
sisting of (top to bottom) a uniform to normal scaling layer (using the normal CDF), PCA projection, and a dense layer.

Figure 2: Example application using a 3D controller to 
control a 5D low-frequency oscillator (LFO).
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Introduction
While autoregressive generative models for waveform audio trained 
on  musical  datasets  achieve  high  fidelity  results,  there  is  still  a 
question of how to design these model to make them more expres-
sive from the user end? One approach to achieving this is the use of 
conditioning on both local (time-varying) variables like MIDI and 
global variables such as instrument or genre. However, this requires 
well-annotated musical datasets. We approach this problem by us-
ing using information theory to learn informative latent variables. 
We look at extending the capabilities of WaveGAN [1] to be able to 
generate any length of time, achieve high-fidelity results, and have 
powerful conditional variables learned without any labels. 

Future Work
Better Quality Generation
We hope to attempt other GAN training algorithms like Progressive 
growing GANs to see if it is possible to get competitive results with 
autoregressive models. Alternatively, it may be possible to use an 
auto-regressive model that learns latent codes using mutual infor-
mation.

Local Conditioning
We would like to explore using both ground truth labels and learned 
variables together. Ideally, figuring out a way to extend this method 
while conditioning on MIDI data, letting the learned codes focus on 
non-labels features such as reverb and sustain.

Methods

References

Generating any length of audio
We propose using a recurrent layer as the first layer of the network 
to replace the dense layer in WaveGAN. This allows us to model 
the input to the network, z, as a (Nframes x Nz ) matrix rather than an 
1x Nz vector. In training, we use Nframes = 16 to generate 16384 
samples, corresponding to 1.024 seconds at a sampling rate of 16 
kHz. At test, however, we use any integer Nframes to generate a 1024* 
Nframes long sample of audio. This extends the capabilities of the net-
work after training by exploiting the statefulness of the recurrent lay-
er. 

InfoGAN
InfoGAN [2] extends the standard GAN model by proposing a 
method for learning latent codes, c, that follow any distribution 
(Gaussian, Uniform, Categorical, etc.) that are appended to the 
standard, non-informative latent variable, z. They argue that these 
latent codes should have an impact on the generated images by 
maximizing mutual information between the learned codes and 
generated images, I(c, G(z,c)). Since this is intractable, however, 
they use variational inference to estimate the lower bound of mutu-
al information.

Results

Model Diagram for improved WaveGAN with learned global 
conditioning

InfoGAN with categorical and continuous latent variables trained on 
MNIST

We trained a network that had multiple continuous variables to-
gether and one categorical variable on the MAESTRO dataset. This 
dataset features over 80 hours of professional piano playing. From 
early results, the model is able to separate piano playing on the 
lower register from the higher register and levels of reverb, sustain 
pedal usage, and volume as features. Further experiments are re-
quired to confirm this algorithm generalizes well to other types of 
datasets. 

Varying a Uniform continuous latent variable from -1 to 1 in-
creased sustain and removes higher frequencies.

Varying a Gaussian continuous latent variable from -1 to 1. Mag-
nitude is amplitude, and phase is related to harmony

-1                                                0                                                  1

-1                                                0                                                  1

[1] Donahue, Chris, Julian McAuley, and Miller Puckette. "Synthe-
sizing Audio with Generative Adversarial Networks." arXiv 
preprint arXiv:1802.04208 (2018).

[2] Chen, Xi, et al. "Infogan: Interpretable representation learning 
by information maximizing generative adversarial nets." Ad-
vances in neural information processing systems. 2016.

APA



Andy 
Wiggins

Automatic Guitar Tablature Transcription with Convolutional Neural Networks 
Andy Wiggins and Youngmoo E. Kim • {awiggins, ykim}@drexel.edu 
Electrical and Computer Engineering, Drexel University

Motivation

Guitarists commonly use tablature notation to learn and share 
music. As it stands, most tablature is created by an experienced 
guitarist taking the time and effort to annotate a song. As the 
process is time consuming and requires expertise, we are inter-
ested in automating this task. Previous approaches to automatic 
tablature transcription [1, 3] break the problem into two discrete 
steps:  1)  polyphonic  pitch  detection followed by 2)  tablature 
fingering  estimation.  Using  a  convolutional  neural  network 
(CNN) model, we can learn a mapping directly from audio data 
to  tablature.  The model  can simultaneously leverage physical 
playability constraints and differences in string timbres to de-
termine the  actual  fingerings  being used by the  guitarist.  We 
propose TabCNN, a convolutional neural network for transcrib-
ing guitar tablature from audio of a solo acoustic guitar perfor-
mance.

[1] Kehling,  Christian,  et  al.  "Automatic  Tablature  Transcription  of  Electric  Guitar 
Recordings by Estimation of  Score-and Instrument-Related Parameters."  DAFx. 
2014.

[2] Q. Xi, R. Bittner, J. Pauwels, X. Ye, and J. P. Bello, "Guitarset: A Dataset for Gui-
tar Transcription", in 19th International Society for Music Information Retrieval 
Conference, Paris, France, Sept. 2018.

[3] Yazawa, Kazuki, Katsutoshi Itoyama, and Hiroshi G. Okuno. "Automatic transcrip-
tion of guitar tablature from audio signals in accordance with player's proficiency." 
Acoustics, speech and signal processing (ICASSP), 2014 IEEE International Con-
ference on. IEEE, 2014.
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TabCNN

Future Work
• The current system determines tablature window by window, and 

does not take into account the sequence over the course of the 
performance. The addition of a recurrent layer to model the pro-
gression of labels over time will help smooth the output labels 
and create a more realistic tablature sequence.

• Data augmentation may help reduce any overfitting in the model. 
Additional training data can be constructed by pitch shifting the 
training audio and adjusting the tablature labels accordingly.

Results

Guitar String Fret Classification 
Accuracy

1st   (e) 0.898

2nd   (B) 0.760

3rd   (G) 0.801

4th   (D) 0.808

5th   (A) 0.884

6th   (E) 0.921

Average 0.845

Figure 1: The TabCNN model architecture. 
Input: The inputs are 192 (frequency bins) x 9 (time frames) CQT images, representing 200ms of isolated acoustic guitar audio.
Convolutional Layers: First, there is a series of three convolutional layers, each with a filter size of 3 x 3. The first convolutional layer has 32 filters, and 
the latter two each have 64. Each convolution is immediately followed by a Rectified Linear Unit (ReLU) activation.
Max Pooling: Next, the feature maps are subsampled by a max pooling layer. Both the filter size and the stride for this operation are 2 x 2. 
Dense Layers: The structure is then flattened and followed by a dense layer of dimension 128, which includes a ReLU activation. This is connected to a 
second dense layer of dimension 126 with no activation.
Softmax: In the final layer, the vector is reshaped to 6 x 21, and a 6-dimensional softmax activation is applied. The output shape represents the 6 guitar 
strings and the 21 different fret classes a string can be assigned: open, closed, and the 19 numbered frets. As a result, the model learns to output a set of six 
probability mass functions, which represent the probability of each fret class for each string.

Model: TabCNN is a convolutional neural network that takes as 
input an image representing a short window of isolated guitar 
audio and outputs a probability mass function for each string’s 
fret classification. (See model architecture in Figure 1 below.)
Dataset:  We  use  the  GuitarSet  dataset  [2],  which  contains 
acoustic guitar  performances in a variety of musical  keys and 
playing  styles.  The  dataset’s  string-wise  pitch  annotations  are 
sampled to produce ground truth tablature labels.
Preprocessing: The audio is segmented into 200ms clips. Each 
clip is downsampled to 22050Hz, and then the magnitude Con-
stant-Q Transform (CQT) is computed, with 24 frequency bins 
per  octave,  spanning 8 octaves.  Using a CQT reduces dimen-
sionality and offers linearity in time and pitch, which can be can 
be exploited by the model’s convolutional layers.
Training:  We train the model for 30 epochs using a 6-dimen-
sional categorical cross-entropy loss function. Dropout regular-
ization is used to reduce overfitting.

Figure  2:  (Left)  Example  input-audio/output-tablature  pairs 
predicted by TabCNN during testing.  (Right)  Table  of  string-
wise and average accuracy metrics calculated during testing
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